Numerical study of the KP equation for non-periodic waves

نویسندگان

  • Chiu-Yen Kao
  • Yuji Kodama
چکیده

The Kadomtsev-Petviashvili (KP) equation describes weakly dispersive and small amplitude waves propagating in a quasi-two dimensional situation. Recently a large variety of exact soliton solutions of the KP equation has been found and classified. Those soliton solutions are localized along certain lines in a two-dimensional plane and decay exponentially everywhere else, and they are called line-soliton solutions in this paper. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. In this paper, we study the initial value problem of the KP equation with Vand X-shape initial waves consisting of two distinct line-solitons by means of the direct numerical simulation. We then show that the solution converges asymptotically to some of those exact soliton solutions. The convergence is in a locally defined L2-sense. The initial wave patterns considered in this paper are related to the rogue waves generated by nonlinear wave interactions in shallow water wave problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transverse spectral stability of small periodic traveling waves for the KP equation

The Kadomtsev-Petviashvili (KP) equation possesses a four-parameter family of one-dimensional periodic traveling waves. We study the spectral stability of the waves with small amplitude with respect to two-dimensional perturbations which are either periodic in the direction of propagation, with the same period as the one-dimensional traveling wave, or non-periodic (localized or bounded). We foc...

متن کامل

Transverse stability of periodic traveling waves in Kadomtsev-Petviashvili equations: A numerical study

We numerically investigate transverse stability and instability of so-called cnoidal waves, i.e., periodic traveling wave solutions of the Kortewegde Vries equation, under the time-evolution of the Kadomtsev-Petviashvili equation. In particular, we find that in KP-I small amplitude cnoidal waves are stable (at least for spatially localized perturbations) and only become unstable above a certain...

متن کامل

Vibration of Road Vehicles with Non linear Suspensions

In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...

متن کامل

Global well-posedness for the KP-I equation on the background of a non localized solution

We prove that the Cauchy problem for the KP-I equation is globally well-posed for initial data which are localized perturbations (of arbitrary size) of a non-localized (i.e. not decaying in all directions) traveling wave solution (e.g. the KdV line solitary wave or the Zaitsev solitary waves which are localized in x and y periodic or conversely).

متن کامل

On critical behaviour in generalized Kadomtsev–Petviashvili equations

An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2012